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The fast multipole method (FMM) is applied to the solution of large-scale, three-dimen-
sional acoustic scattering problems involving inhomogeneous objects defined on a regular
grid. The grid arrangement is especially well suited to applications in which the scattering
geometry is not known a priori and is reconstructed on a regular grid using iterative inverse
scattering algorithms or other imaging techniques. The regular structure of unknown scat-
tering elements facilitates a dramatic reduction in the amount of storage and computation
required for the FMM, both of which scale linearly with the number of scattering elements.
In particular, the use of fast Fourier transforms to compute Green’s function convolutions
required for neighboring interactions lowers the often-significant cost of finest-level FMM
computations and helps mitigate the dependence of FMM cost on finest-level box size.
Numerical results demonstrate the efficiency of the composite method as the number of
scattering elements in each finest-level box is increased.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Acoustic scattering from large-scale, inhomogeneous, penetrable structures in three dimensions has a wide range of
applications. For example, estimation and correction of aberration requires simulation of propagation of ultrasound pulses
through aberrating media [1–3]. Iterative inverse scattering algorithms such as the distorted Born iterative method [4–7]
and the eigenfunction method [8–10] require repeated computation of the forward scattering problem for successive
guesses of a reconstructed medium. The arbitrary nature of the scattering media, the desire for automatic satisfaction of
the radiation condition, and the embarrassingly parallel nature of solutions at multiple frequencies make frequency-domain
integral equation solvers particularly attractive where repeated calculations are required.

The fast multipole method (FMM) [11–13] has emerged as a widely used algorithm [14] for efficient solution of integral
equations that describe electromagnetic or acoustic scattering in two or three dimensions. Through recursive subdivision of
the media into groups of scattering elements, the FMM computes the product of a test vector and the Green’s function matrix
in a time that is O(N) when the medium is composed of N scattering elements distributed in a volume-filling fashion. Like
methods such as the adaptive cross approximation [15–17], efficient solutions are obtained by eliminating approximately
redundant information from interactions between sufficiently separated groups. However, these methods achieve a common
goal using different techniques. The adaptive cross approximation uses an algebraic method to construct products of low-
rank matrices that cast all pairwise interactions in terms of fewer, dominant interactions. In contrast, the FMM discards
redundant information by representing interactions using band-limited multipole expansions.
. All rights reserved.
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In traditional implementations, the FMM has significant computational overhead and storage requirements (that both
scale linearly with the problem size). Normally, the computational overhead is overlooked, because it can be amortized over
the many matrix–vector products computed during iterative solution of the scattering problem. Another key issue associated
with the FMM is its sensitivity to the size of finest-level scattering groups: when the groups are too small, the diagonal trans-
lation operators suffer from low-frequency breakdown and must be replaced with alternative operators. For very large
groups, efficiency suffers because interactions between neighboring groups (that cannot be calculated using diagonal trans-
lation operators) are normally represented as dense Green’s function matrices.

Regular, gridded arrangements of scattering elements in three dimensions arise in many problems of interest. In the
aforementioned inverse methods, the scattering structure is not known a priori, rendering more sophisticated geometric
meshes useless. Additionally, scattering models developed with other techniques, such as magnetic resonance or b-scan
imaging, are often defined on a regular grid of voxels. Regular arrangements of unknowns offer simplicity of description
and visualization.

When the scattering elements are arranged in a regular grid, variants of the conjugate gradient-fast Fourier transform
(CG-FFT) method have also been applied to scattering problems in three dimensions [18–21]. These methods exploit the con-
volutional nature of the Green’s function to evaluate the product of a test vector and the Green’s function matrix as a Had-
amard product in the spectral domain. Such methods have very little computational overhead and are easily understood and
implemented. The comparatively large scaling constant and conceptual complexity of the FMM mean that CG-FFT methods
may remain competitive for problems of intermediate scale.

The most substantial issues associated with the FMM can be avoided when scattering elements are defined on a regular
grid. At the finest FMM level, neighboring interactions are directly computed as a convolution of the Green’s function and a
source pressure distribution. Elements defined on a grid allow this convolution to be accelerated using the FFT in the same
fashion as CG-FFT methods. The reduced complexity afforded by FFT convolution diminishes the dependence of the FMM
on the finest-level group size, allowing groups to grow large enough to avoid low-frequency breakdown or to match the
natural structure of the scattering geometry (for example, a sparse arrangement of smaller scatterers occupying a large vol-
ume). Additionally, the regular arrangement of scattering elements, when made to coincide with the grid imposed by
recursive FMM group subdivisions, can be exploited to reduce dramatically the computational and storage overhead asso-
ciated with FMM setup. This reduction in setup overhead eliminates a key advantage held by CG-FFT methods over the
FMM.

Two principal factors motivate the use of the FMM over pure CG-FFT methods even when scattering elements are defined
on a regular grid. First, the asymptotic complexity of methods based on FFT convolution of the Green’s function with a pres-
sure distribution is O(NlogN) for N scattering elements. The O(N) asymptotic complexity of the FMM for volume scattering
means that, in the large-problem limit, the FMM will eventually be more efficient than purely FFT-based methods. In three
dimensions, even modest increases in problem scale can rapidly push N above this crossover point. Second, CG-FFT methods
can not accommodate scattering geometries which contain large regions of homogeneous background material without
modeling these non-scattering regions. With the FMM, gridded arrangements of scattering elements do not need to be con-
nected, and the background material does not need to be modeled. This results in a reduction in the overall unknown count
that can dramatically improve efficiency.

This paper presents an implementation of the fast multipole method that uses FFT convolution to represent neighboring
interactions at the finest level and that exploits the regular arrangement of basis functions to reduce significantly the mem-
ory demands and setup overhead of the fast multipole method. The efficiency provided by regular arrangements of scattering
elements in the FMM has been previously recognized [7,22], and the use of a hybrid FFT and FMM was presented in Ref. [22]
for electromagnetic scattering from dielectric media. However, Ref. [22] was primarily interested in arrangements of sparse
scatterers, with FFT convolution representing interactions within each entire scatterer. The FMM interactions in Ref. [22]
were only used to convey interactions between distinct, whole scatterers. This is inefficient when the scatterers are large
because of the asymptotic scaling of FFT convolution is worse than that of the FMM, and because of the cost of evaluating
far-field FMM signatures becomes prohibitively expensive. The application of FFT convolution to neighboring interactions
within a dense scatterer requires a novel formulation that was recognized in the noted work, but was not developed. This
paper presents an explicit development of a hybrid FFT-FMM formulation that uses the FMM within dense scatterers and
relies on FFT convolution only for near-field interactions. In addition, this paper explores the scaling of the FMM with FFT
convolution as the numbers of elements in finest-level groups are varied significantly, thereby offering insight into issues
related to large groups and offering techniques to avoid these issues.

2. Theory

Problems of interest involve three-dimensional scattering of acoustic waves in the presence of a bounded, penetrable,
inhomogeneous scatterer with arbitrarily variable sound speed c(r), attenuation a(r), and density q(r), where r is a three-
dimensional coordinate vector. The scatterer will be considered to be embedded in an infinite, homogeneous background
medium with sound speed c0, attenuation a0, and density q0. The complex wave number describing the scatterer is [10,23]
kðrÞ ¼ x
cðrÞ þ iaðrÞ; ð1Þ
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where x = 2pf is the radian frequency of the time-harmonic pressure fields. Assuming a time dependence of e�ixt, the total
acoustic pressure p(r) satisfies the acoustic wave equation [24]
qðrÞr � q�1ðrÞrpðrÞ
� �

þ k2ðrÞpðrÞ ¼ �SðrÞ; ð2Þ
where S is an arbitrary acoustic source distribution. With the change of variable pðrÞ ¼ q1=2
n ðrÞf ðrÞ, where qn = q/q0, the wave

Eq. (2) becomes the Helmholtz equation for the pseudo-pressure f(r) [25,26]
r2f ðrÞ þ k2
0f ðrÞ ¼ �q�1=2

n ðrÞSðrÞ � OðrÞf ðrÞ; ð3Þ
where the object contrast is
OðrÞ ¼ k2ðrÞ � k2
0 � q1=2

n ðrÞr2q�1=2
n ðrÞ: ð4Þ
The pseudo-pressure may be split into incident and scattered fields
f ðrÞ ¼ f iðrÞ þ f sðrÞ; ð5Þ
where the incident field satisfies the contrast-free Helmholtz equation
r2 þ k2
0

h i
f ðrÞ ¼ �q�1=2

n ðrÞSðrÞ: ð6Þ
If the source term S is nonzero only where qn = 1, the incident pseudo-pressure fi is equivalent to the true incident pressure.
The homogeneous Green’s function
g0ðr; r0Þ ¼
eik0 jr�r0 j

4pjr� r0j ð7Þ
satisfies the Helmholtz Eq. (6) in the presence of a point source located at r0:
r2 þ k2
0

h i
g0ðr; r0Þ ¼ �dðr� r0Þ: ð8Þ
Hence, eliminating the incident pseudo-pressure from Eq. (3), the scattered pseudo-pressure is
f sðrÞ ¼
Z

D
dr0g0ðr; r0ÞOðr0Þf ðr0Þ; ð9Þ
where D is the domain over which the object contrast O is nonzero. The scattered pseudo-pressure is equal to the true scat-
tered pressure wherever qn = 1. Therefore, if D is free of acoustic sources and measurements are taken outside of the scat-
terer domain, an integral equation solver that inverts the scattering equation
f ðrÞ �
Z

D
dr0g0ðr; r0ÞOðr0Þf ðr0Þ ¼ f iðrÞ ð10Þ
can neglect distinctions between the pseudo-pressure f and the true pressure p since the quantities are equivalent in the
regions of interest.

3. Methods

Numerical solution of the scattering Eq. (10) is accomplished by subdividing the scattering domain D into a collection
{cj: 0 6 j < N} of N disjoint, cubic cells and assigning to each cell cj a constant contrast value Oj and a constant field value fj:
OðrÞ ¼
XN�1

j¼0

OjvjðrÞ; ð11aÞ

f ðrÞ ¼
XN�1

j¼0

fjvjðrÞ; ð11bÞ
where vj is an arbitrary basis function corresponding to cj. In this formulation, vj represents the characteristic function of cj.
Using the Galerkin method, the discrete expansions (11) are inserted into the scattering Eq. (10) and both sides are tested
with functions vi to yield N discrete equations that may be represented in matrix form as
f � G � ~f ¼ f i
; ð12Þ
where the column vectors f ¼ ½fj�; ~f ¼ ½Ojfj�; the column vector f i ¼ ½f i
j � contains entries
f i
j ¼

Z
D

drvjðrÞf iðrÞ ð13Þ
and the Green’s matrix G ¼ ½Gij� contains entries



8202 A.J. Hesford, R.C. Waag / Journal of Computational Physics 229 (2010) 8199–8210
Gij ¼
Z

D
drviðrÞ

Z
D

dr0g0ðr; r0Þvjðr0Þ: ð14Þ
For large problems, iterative solution methods such as the generalized minimal residual method (GMRES) [27] or the stabi-
lized biconjugate gradient method (BiCG-STAB) [28] are preferable to computationally expensive, direct inversion of the
scattering matrix represented in (12). More importantly, iterative methods obtain solutions through repeated application
of a discrete linear operator to search vectors within Krylov subspaces of the operator. With efficient methods, these oper-
ations may be performed without explicitly filling a matrix or directly computing a matrix–vector product, reducing com-
putation time and storage demands. The fast multipole method, for example, evaluates the linear operation of Eq. (12) in
O(N) time and with O(N) storage for N volume scattering elements [13].

3.1. The fast multipole method

A detailed discussion of the fast multipole method (FMM) and its implementation may be found in Ref. [13]. In essence,
the FMM is a rank-reducing technique. Interactions between sufficiently separated groups of scattering elements are approx-
imately represented by band-limited multipole expansions. In the Fourier domain, the multipole expansions become plane-
wave expansions that are related by diagonal translation operators. An efficient solution to (12) is obtained by recursively
grouping neighboring scattering elements and approximating the Green’s matrix elements (14) as
Gij �
Z

X
dŝRiðcI; ŝÞaI;JðŝÞFjðcJ; ŝÞ; ð15Þ
where X is the unit sphere in three dimensions, Ri is the incoming far-field signature of vi relative to the target group center
cI, Fj is the outgoing far-field signature (or radiation pattern) of vj relative to the source group center cJ, and aI, J is a diagonal
translation from the source group centered at cJ to the target group centered at cI. The translator for the three-dimensional
scalar Green’s function (7) takes the form
aI;JðŝÞ ¼
i

4p
XL

m¼0

imð2mþ 1ÞPmðŝ � ŝIJÞhmðk0jcI � cJ jÞ; ð16Þ
where Pm is the Legendre polynomial of order m, hm is the spherical Hankel function of the first kind and of order m, the
direction ŝIJ is given by
ŝIJ ¼
cI � cJ

jcI � cJ j
; ð17Þ
and L is an appropriately selected truncation point that depends on the acoustic size of the source and target groups [13]. The
approximation (15) is valid provided the source group J and the target group I are well separated, i.e., jcI � cJj is larger than
some multiple of the acoustic size of the source or target groups. In practice, the multiple is often chosen to be at least two,
although a multiple approaching unity can be used in restricted cases [29].

The efficiency of the FMM stems from the distributive property of the translation operator. For all cells cj within a single
source group J and any target cell ci in a group I that is well separated from J,
X
j2idxJ

GijOjfj �
Z

X
dŝRiðcI; ŝÞaI;JðŝÞ

X
j2idxJ

OjfjFjðcJ ; ŝÞ; ð18Þ
where idxJ is the collection of indices j corresponding to the cells cj in group J. The FMM translation operation may be applied
to the aggregated outgoing far-field signature

P
jOjfjFj for the group, rather than individually for each source cell. Through a

hierarchical grouping of the scattering elements, outgoing far-field signatures may be recursively aggregated for successively
larger groups, thereby reducing the number of translation operations while increasing the number of angular samples ŝ
required to accurately represent the signatures. The translated signatures are then recursively distributed to successively
smaller target groups before the incoming signatures Ri are applied at the finest level to ‘‘focus” the signatures on each
individual cell. In a volume-filling scattering domain, the increased cost of aggregation, translation, and distribution for
larger groups is balanced by the reduction in the number of groups for which translations must be performed, resulting
in an overall scaling of O(N) for an FMM involving N scattering cells [13].

For the described scattering problem, the outgoing and incoming far-field signatures of a basis or testing function vj are,
respectively, [13]
FjðcJ ; ŝÞ ¼ k0

Z
D

dreik0 ŝ�ðcJ�rÞvjðrÞ; ð19aÞ

RjðcJ ; ŝÞ ¼
Z

D
dreik0 ŝ�ðr�cJÞvjðrÞ: ð19bÞ
Noteworthy is that, when vj is real-valued, the outgoing far-field signature is related to the incoming far-field signature by
Fj ¼ kR�j , where (�)* denotes the complex conjugate. Hence, only one signature must be computed for vj. This is also the moti-
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vation for requiring the field values fj to be multiplied by Oj before multiplication with the Green’s matrix in (12), rather than
explicitly including the contrast O in the definition of the Green’s matrix elements (14); inclusion of O in the Green’s matrix
would require the integrand in the far-field signature (19a) to include the factor O, breaking the symmetry of the patterns.
When the discrete cells ci are defined on a regular grid, this symmetry can be further exploited to reduce the computational
and memory overhead associated with the fast multipole method. This is discussed in detail following the presentation of
numerical results.

3.2. Convolution with fast fourier transforms

The fast multipole method is incapable of providing accurate approximations to the interaction between elements of
neighboring (i.e., not well separated) groups. Therefore, direct evaluation of the Green’s matrix elements corresponding to
these interactions is required. In general formulations, interactions between neighboring groups, each containing O(M) ele-
ments, are represented in local Green’s matrices containing O(M2) elements each. Multiplication of these local matrices and
the local portion of the vector ~f requires O(M2) computer time. Since M is often very small compared to the total number of
scattering elements, this does not impact the complexity of the FMM. However, evaluation of neighboring interactions can
still represent a significant portion of the computational effort of the FMM. When the scattering elements are cubic cells
defined on a regular grid, direct evaluations can be computed in O(MlogM) time, with O(M) storage, using convolution via
fast Fourier transforms (FFTs). If the total number of scattering elements is N, then the number of finest-level FMM groups
will be O(N/M). The total cost for the evaluation of neighboring interactions using FFT convolution is therefore O(NlogM), in
comparison to the O(NM) total cost for dense-matrix multiplication of neighboring interaction matrices. Thus, for a fixed
problem size N, FFT convolution dramatically reduces the dependence of calculations of neighboring interactions on the
group size M.

Traditional derivations of Green’s function convolution via FFT assume that interactions must be represented among all
cells in the grid [20,21]. However, as illustrated in Fig. 1, FFT convolution cannot be used in this fashion to compute
neighboring interactions in the FMM with immediately adjacent groups. A convolutional grid that encompasses only the
neighbors of Target A will compute interactions at Target B that do not include the influence of its exclusive neighbors
(the white boxes). Defining the convolutional grid to encompass all illustrated boxes results in the exclusive neighbors of
Target A (the light-gray boxes) inappropriately influencing Target B, as well as the exclusive neighbors of Target B inappro-
priately influencing Target A. Furthermore, neither of these grids properly accommodate the unlabeled boxes in the diagram
when those boxes have neighbors not shown in the illustration.

Modifications of the FFT convolution scheme for pairwise group interactions are here derived in the context of acoustic
interactions between finest-level FMM groups. Let ci represent a target cell in the FMM group I, while J represents a collection
of source cells in the FMM group (the groups I and J may be the same). Furthermore, let each group contain M scattering cells,
arranged in an Mx �My �Mz grid. The cell ci will have an index representation (l,m,n) within the grid local to group I, while a
cell cj will have an index representation (t,u,v) within the grid local to group J. The scattering contribution (9) to the matrix–
vector product (12) at ci due to sources within group J may be expressed as
Fig. 1.
neighbo
f s
i ¼

X
j2idxJ

GijOjfj ¼
XMx�1

t¼0

XMy�1

u¼0

XMz�1

v¼0

GIJðl� t;m� u; n� vÞOtuv ftuv ; ð20Þ
where Otuvftuv = Ojfj for the global index j corresponding to the local grid index (t,u,v) and the pairwise Green’s function
A B

Neighbor interactions for target boxes A and B. Dark-gray neighbors influence both targets; light-gray neighbors influence only target A; white
rs influence only target B.
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GIJðl� t;m� u;n� vÞ ¼
Z

D
drv0ðrÞ

Z
D

dr0 g0ðr; r0 þ Drþ rJIÞv0ðrÞ: ð21Þ
Translational invariance and the equivalence of all cells ci allows the characteristic functions vi and vj in the definition of the
Green’s matrix element Gij (14) to be replaced with an arbitrary characteristic function such as v0. Hence, elements of the
pairwise Green’s function GIJ are functions only of the separation of two cells, rather than their absolute positions. The offsets
in (21) are given by
rJI ¼ cJ � cI; ð22aÞ
Dr ¼ ðl� tÞDx; ðm� uÞDy; ðn� vÞDz½ �; ð22bÞ
where each scattering cell has x, y, and z lengths Dx, Dy, and Dz, respectively.
The three-dimensional convolution (21) can only be evaluated in the Fourier domain if GIJ satisfies the cyclic properties
GIJð�t;u;vÞ ¼ GIJðMx � t; u;vÞ; ð23aÞ
GIJðt;�u;vÞ ¼ GIJðt;My � u;vÞ; ð23bÞ
GIJðt;u;�vÞ ¼ GIJðt; u;Mz � vÞ: ð23cÞ
To satisfy these criteria, the pairwise Green’s function GIJ defined on the local Mx �My �Mz grid must be replaced with a
modified Green’s function G0IJ defined on an expanded 2Mx � 2My � 2Mz grid. The modified Green’s function
G0IJðt;u; vÞ ¼ GIJðt0;u0;v 0Þ; ð24Þ
in which the mappings
t0 ¼
t if 0 6 t < Mx;

t � 2Mx if Mx 6 t < 2Mx;

�
ð25aÞ

u0 ¼
u if 0 6 u < My;

u� 2My if My 6 u < 2My;

�
ð25bÞ

v 0 ¼
v if 0 6 v < Mz;

v � 2Mz if My 6 v < 2Mz

�
ð25cÞ
relate indices (t0,u0,v0) on the original Mx �My �Mz grid to indices (t,u,v) on the expanded 2Mx � 2My � 2Mz grid. Note that
the index mappings (25) are different than those used in traditional FFT convolution formulations because the pairwise
Green’s function is not symmetric about zero. However, when groups I and J coincide (such that rJI = 0) the two expansions
are equivalent. The product of the contrast and pseudo-pressure must similarly be expressed on an expanded grid as
O0tuv f 0tuv ¼
Otuv ftuv ; if 0 6 t < Mx; 0 6 u < My; and 0 6 v < Mz;

0 otherwise:

�
ð26Þ
The expressions (24) and (26) allow the contribution of group J to ci (20) to be represented as a Fourier-domain
multiplication:
f s
i ¼ F�1 F O0tuv f 0tuv

� �
� FG0IJðt; u;vÞ

h i
lmn
; ð27Þ
where F represents the discrete Fourier transform and the group-local index triple (l,m,n) corresponds to the global index i.
These contributions can be summed for all neighbor groups J of I to calculate the near terms overlooked by the fast multipole
method.

4. Numerical results

Numerical experiments were performed on a single scattering geometry under a variety of conditions. The geometry con-
sisted of twelve scattering spheres embedded in an infinite, lossless background (water) with a sound speed of 1509 m/s and
no attenuation. Each of the spheres had a unique, uniform material profile designed to mimic the human tissues listed in
Table 1. The properties of each of the twelve spheres are listed in Table 2, and a diagram depicting the sphere arrangement
is shown in Fig. 2.
Table 1
Material properties of spheres designed to mimic human tissue.

Tissue Sound speed m/s Absorption dB/(cm MHz)

Water 1509.0 0.00
Fat 1478.0 0.52
Muscle 1547.0 0.91
Skin 1613.0 1.61



Table 2
Characteristics of the spheres in the tissue-mimicking phantom.

Radius (mm) Center (mm) Tissue

x y z

4.0 0.0 0.0 0.0 Fat
5.0 14.0 2.0 4.0 Skin
5.0 5.0 �10.0 �4.0 Fat
3.0 17.0 �7.0 0.0 Fat
7.8 �10.0 10.0 7.2 Muscle
7.8 5.0 12.0 �7.2 Muscle
5.0 14.0 12.0 3.0 Muscle
5.0 �5.0 �18.0 �3.0 Skin
2.5 7.5 �18.0 �2.0 Skin
1.5 �4.0 20.0 0.0 Skin
2.5 �18.0 4.0 2.0 Skin
9.1 �12.5 �5.0 �5.2 Muscle

Fig. 2. An arrangement of twelve tissue-mimicking spheres in a water background. The spheres are colored according to their composition as listed in Table
2. Red, green and blue represent skin, muscle, and fat, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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The collection of scattering spheres was chosen because it is easy to model and because efficient methods can be devel-
oped [29,30] to compute solutions that may be used to validate the FMM. Because the FMM is designed to compute scatter-
ing from domains with arbitrarily variable medium characteristics, it can not exploit efficiencies associated with this
particular geometry and is, therefore, not the optimum choice for these computations. However, the general nature of the
FMM means that the performance observed in these experiments is representative of the performance that would be ex-
pected from scattering computations involving truly arbitrary geometries, for which the FMM would be a more suitable
choice.

The twelve-sphere arrangement was used in two numerical experiments. In the first, the computational scaling of the
FMM was examined using both dense-matrix multiplication and FFT convolution for neighboring interactions as a function
of increasing finest-level group size. In the second experiment, a higher incident frequency was used to produce a problem of
much larger scale. This problem was solved using both the FMM with FFT convolution and compared to the results computed
with a fast sphere solver [29]. In both experiments, iterative inversion of the scattering equation was performed using the
stabilized biconjugate gradient method (BiCG-STAB) [28]. The BiCG-STAB solver requires two matrix–vector products and
four inner products per iteration.
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4.1. Computational scaling as a function of Finest-Level group size

Investigation of FMM scaling with FFT convolution was accomplished using a relatively small-scale problem to facilitate
rapid solution of multiple scattering experiments involving finest-level groups containing variable numbers of scattering ele-
ments. Scattering from the twelve-sphere arrangement was simulated at 300 kHz, corresponding to a water wavelength
k0 = 5.03 mm. The scattering domain was confined to a cube with sides of length 9.6k0 and was sampled with a regular spac-
ing of 0.1k0 per dimension, resulting in a 96 � 96 � 96 grid of scattering elements. The water background accounts for
approximately 90% of the total volume of the scattering domain. In practical applications, the FMM can be exploited to avoid
meshing this large volume of non-scattering material and, therefore, to improve performance by a factor of ten. However, for
this experiment, the FMM implementation was kept uncomplicated by meshing the entire volume. While a pure CG-FFT
implementation might be more suitable for this non-optimal grid, the FMM performance observed is representative of
the performance of problems involving the same number of elements distributed throughout disjoint grids for which the
CG-FFT is not a suitable choice.

The sizes of the finest-level FMM groups were constrained to be integer multiples of the unknown grid spacing in all three
dimensions. Thus, for every test configuration, unknowns in each finest-level group coincided with the same affine grid. This
was required to permit FFT convolution of neighboring interactions and also reduced the memory and setup demands of the
FMM. Groups were chosen to be cubes containing a number 2 6Md 6 16 of scattering elements per dimension. The total
number of elements in a finest-level group is denoted M ¼ M3

d .
Timing experiments were run on a computer system housing 16 GB of RAM and two dual-core processors operating at

2.4 GHz. Implementations of the FMM with FFT convolution and dense-matrix multiplication for neighboring interactions
were each multithreaded to take advantage of all four processing cores with 97% parallel efficiency. For both implementa-
tions of the FMM, times were recorded for computation of a full matrix–vector product, the evaluation of only neighboring
interactions, and the computation of far-field signatures at the finest level. Far-field signature computation at the finest level
consists of evaluation of outgoing far-field signatures for groups of scattering elements, as well as distribution of incoming
signatures for each group to its constituent elements. Only the time spent computing neighboring interactions varied be-
tween FMM implementations; all other components of the FMM computation were identical. The recorded computation
times are shown in Fig. 3 as a function of the number of scattering elements in each finest-level FMM group. In addition,
the proportion of the total matrix–vector-product time spent computing neighboring interactions and far-field signatures
is shown in Fig. 4 for each FMM implementation.

For Md 6 4, there was no appreciable difference in computation time for a matrix–vector product whether dense-matrix
multiplication or FFT convolution was used to represent neighboring interactions. However, as Md increased, dense-matrix
multiplication of neighboring interactions became the dominant portion of the matrix–vector product, rapidly increasing the
overall computation time. The FMM implementation employing FFT convolution for neighboring interactions was more effi-
cient and exhibited a reduced dependence on the number of scattering elements in each finest-level FMM group.

Over the range 4 6Md 6 12 (corresponding to a 27-fold increase in the total number of elements functions per FMM
group), the total time required to compute a matrix–vector product using FFT convolution for neighboring interactions
did not significantly increase. Fluctuations over this range of group sizes were attributable to the changing FMM hierarchy
and to differences in the efficiency of computing FFTs of different sizes (e.g., FFTs with lengths that are powers of two are
more efficient than FFTs with lengths that are products of powers of other prime numbers).
Fig. 3. Time required to compute a complete matrix–vector product (‘‘Total”) as a function of finest-level FMM group size for both FFT convolution (‘‘FFT”)
and dense-matrix multiplication (‘‘Mat”) of neighboring interactions. Also shown are the times for computing only neighboring interactions (‘‘Direct”) and
for computing only far-field signatures (‘‘Signatures”) at the finest level.



Fig. 4. Fractions of total time for matrix–vector products consumed by far-field signatures (‘‘Signatures”) and neighboring interactions (‘‘Direct”) when
using the FMM with FFT convolution (‘‘FFT”) and dense-matrix multiplication (‘‘Mat”).
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For Md > 12, the cost of far-field signature computations at the finest level became the dominant portion of the matrix–
vector product when FFT convolutions are used to compute neighboring interactions. The number of samples required to
represent the far-field signatures for a single FMM scales as OðM2

dÞ. As Figs. 3 and 4 show, the efficiency of the hierarchical
FMM suffers long before the efficiency of FFT convolution for neighboring interactions as the finest-level group size is in-
creased. Hence, for optimum efficiency, the FMM should not be used only for interactions between large, dense scatterers;
these scatterers should themselves be subdivided.
4.2. Validation for a larger problem

To produce a larger problem for validation of the FMM, an incident wave of 1 MHz was assumed, corresponding to a water
wavelength k0 = 1.51 mm. At this frequency, the scattering geometry was confined to a cube with sides of length 32k0. Sam-
pled with a regular spacing of 0.1k0 per dimension, the resulting 320 � 320 � 320 grid consists of almost 33 million
unknowns.

By taking advantage of the regular structure of unknowns and FFT convolution, FMM setup time (computing the diagonal
translators for every level, interpolation matrices to resample far-field signatures, far-field signatures for finest-level FMM
groups, and Green’s functions for neighboring interactions at the finest level) was reduced to less than 1 min. Total memory
consumption was limited to just under 6 GB, approximately 2 GB of which was reserved to store the Fourier transforms of
pressure distributions in all boxes to avoid repeated computation. A more aggressive optimization would dramatically
reduce this cache size without a significant (or any) increase in computation time by carefully arranging neighboring calcu-
lations so that only currently-required Fourier transforms were stored, an were fully utilized before being discarded.

Computation of scattering from a single plane wave incident from the +x direction required 14 BiCG-STAB iterations to
converge to a residual norm of 10�3, and was completed in 5,716 s. The finest-level FMM groups contained 5 basis functions
per dimension, resulting in a six-level FMM in which all finest-level groups are uniformly populated. The resulting azimuthal
scattering pattern is shown in Fig. 5. The computed pattern was compared to the fast sphere scattering solver presented in
Ref. [29] by computing the overall root-mean-squared error (RMSE), given by
RMSE ¼
Z

X
dŝ psðŝÞ � ps;rðŝÞ
�� ��2 Z

X
dŝ

�
ps;rðŝÞ
�� ��2	 
1=2

ð28Þ
for a far-field scattered pressure ps and a reference scattered pressure ps,r on the unit sphere X. The RMSE between the two
methods was 2.7%. The fast sphere solver, by exploiting this simplistic scattering geometry, is much more efficient for this
particular problem. The reference solution was computed in only 13 s.
5. Discussion

Two aspects of the FMM efficiency merit special comment. The first is the reduction in storage and setup time that is
gained by using a regular arrangement of scattering elements and the use of FFT convolution for neighboring interactions.
The second is the potential to further improve computational efficiency of the matrix–vector product when the finest-level
FMM group size is large.



Fig. 5. Azimuthal scattering pattern of the twelve-sphere, tissue-mimicking phantom for a 1 MHz plane wave incident from the +x direction.
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5.1. Storage and setup efficiency

As noted in the validation experiment for a 1 MHz incident plane wave, the FMM setup time was reduced to less than
1 min by taking advantage of the regular arrangement of basis functions in the volume scattering problem. In typical appli-
cations of the FMM, basis functions of arbitrary shapes and locations in either two or three dimensions yield incoming and
outgoing far-field signatures that may be unique for every basis function. To reduce the computational cost of applying the
matrix–vector product, these patterns are usually precomputed and stored for every basis function. For the example above,
this requires evaluation of nearly 66 million far-field signatures, with 244 samples per pattern. However, since the incoming
signature is the complex conjugate of the outgoing signature, only 33 million signatures required computation.

When the unknowns are defined on a regular grid and made to coincide with the grid defined by the finest-level FMM
groups, the far-field signatures need only be computed for a single, representative box. In the experiment above, each
box contains only 53 = 125 scattering elements. Hence, the cost of computing far-field signatures, normally one of the
two costliest parts of FMM setup, is reduced by a factor of 262,144. The memory is also reduced by the same factor; the cost
for storing the representative signatures in floating-point arithmetic is only 238 kB, whereas the cost for storing all unique
patterns would be nearly 60 GB!

Neighboring interactions, the other of the two costliest parts of FMM setup, also need be computed for only a represen-
tative set of interactions. Because not every finest-level group is bordered on all sides by other groups, the reduction in mem-
ory and computation time is not exactly N/M for a problem involving N unknowns and M unknowns in each finest-level
group. However, the reduction is still O(N/M), with a proportionality constant close to unity.

5.2. Further improving efficiency for large groups

The results in Figs. 3 and 4 suggest that modifications to the FMM can improve efficiency when the group size is large. As
the group size is increased, the cost of evaluating far-field signatures exceeds the cost of evaluating neighboring interactions.
However, the evaluation of far-field signatures and neighboring interactions can be performed at different levels in the FMM
hierarchy. If group sizes are made large to avoid low-frequency breakdown of outgoing-to-incoming diagonal translation,
they may be further subdivided to compute outgoing far-field signatures or to use incoming signatures to distribute fields
to basis functions, because these operations are not subject to the same low-frequency breakdown problems.

If L represents the number of levels in an FMM hierarchy, and neighboring interactions are evaluated at some level LN < L,
the computational cost of all FMM operations (translations and resampling between levels) is strictly bounded above by the
cost of FMM operations in an ordinary L-level FMM because outgoing-to-incoming translations will not be performed for
levels greater than LN. Thus, the total cost for performing a matrix–vector product in this fashion does not exceed the
sum of the cost of FMM operations for an ordinary L-level FMM and the cost of computing neighboring interactions in an
LN-level FMM.

As an example, consider the scaling experiment in Fig. 3. For the FMM structure with 8 elements per group per dimension,
the total time required to compute a matrix–vector product on the aforementioned four-core, parallel system was 71.2 s, of
which 12.5 s was dedicated to neighboring interactions with FFT convolution. Hence, 58.7 s was required to compute all
FMM related interactions. If the neighboring interactions are instead evaluated on the next-highest FMM level, with 16 ele-
ments per group per dimension, the time for FMM computations will not exceed 58.7 s, and the cost of neighboring inter-
actions will increase to 13.9 s as measured in the experiment. The total time for the matrix–vector product in this setup is
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bounded from above by 72.6 s, which is significantly lower than the 128.3 s observed when the finest FMM level enclosed 16
elements per group per dimension. Thus, evaluation of neighboring interactions by using FFT convolution at a coarser FMM
level can simultaneously avoid the increasing cost of far-field signature evaluations for increasing finest-level box size and
the low-frequency breakdown problem when FMM groups are acoustically small.
6. Conclusion

An integral equation formulation was presented for the solution of acoustic scattering problem in the presence of three-
dimensional, penetrable scatterers categorized by arbitrary spatial variations of sound speed, attenuation, and density. The
arrangement of scattering elements in a regular grid and the use of the FMM facilitates a dramatic reduction in storage
requirements and the computational cost for the FMM setup. Additionally, the regular arrangement of elements permit
the use of FFT convolution for evaluation of neighboring interactions, reducing the penalty incurred when finest-level
FMM groups are relatively large. Modification of the method to compute direct interactions on a coarser FMM level offers
a further-reduced dependency of computation time on the finest-level group structure.
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